High sensitivity and wide response range artificial synapse based on polyimide with embedded graphene quantum dots

Scientific Reports(2023)

引用 1|浏览5
暂无评分
摘要
Artificial electronic synapses are commonly used to simulate biological synapses to realize various learning functions, regarded as one of the key technologies in the next generation of neurological computation. This work used a simple spin coating technique to fabricate polyimide (PI):graphene quantum dots(GQDs) memristor structure. As a result, the devices exhibit remarkably stable exponentially decaying postsynaptic suppression current over time, as interpreted in the spike-timing-dependent plasticity phenomenon. Furthermore, with the increase of the applied electrical signal over time, the conductance of the electrical synapse gradually changes, and the electronic synapse also shows plasticity dependence on the amplitude and frequency of the pulse applied. In particular, the devices with the structure of Ag/PI:GQDs/ITO prepared in this study can produce a stable response to the stimulation of electrical signals between millivolt to volt, showing not only high sensitivity but also a wide range of “feelings”, which makes the electronic synapses take a step forwards to emulate biological synapses. Meanwhile, the electronic conduction mechanisms of the device are also studied and expounded in detail. The findings in this work lay a foundation for developing brain-like neuromorphic modeling in artificial intelligence.
更多
查看译文
关键词
embedded graphene quantum dots,polyimide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要