M-EMBER: Tackling Long-Horizon Mobile Manipulation via Factorized Domain Transfer
arxiv(2023)
摘要
In this paper, we propose a method to create visuomotor mobile manipulation solutions for long-horizon activities. We propose to leverage the recent advances in simulation to train visual solutions for mobile manipulation. While previous works have shown success applying this procedure to autonomous visual navigation and stationary manipulation, applying it to long-horizon visuomotor mobile manipulation is still an open challenge that demands both perceptual and compositional generalization of multiple skills. In this work, we develop Mobile-EMBER, or M-EMBER, a factorized method that decomposes a long-horizon mobile manipulation activity into a repertoire of primitive visual skills, reinforcement-learns each skill, and composes these skills to a long-horizon mobile manipulation activity. On a mobile manipulation robot, we find that M-EMBER completes a long-horizon mobile manipulation activity, cleaning_kitchen, achieving a 53% success rate. This requires successfully planning and executing five factorized, learned visual skills.
更多查看译文
AI 理解论文
溯源树
样例

生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn