Constructing bilayer sensors with Co-MOF-derived Co3O4 porous sensing films and SnO2 catalytic overlayers to enhance room-temperature triethylamine sensing performance

Ceramics International(2023)

引用 4|浏览1
暂无评分
摘要
Gas sensors with good repeatability and controllable fabrication method are extremely desired for practical applications. Co-MOF-derived Co3O4 is a promising gas-sensing material candidate because of its large surface area, ultrahigh porosities, and abundant oxygen defects. However, the advantages of Co-MOF precursor were limited by the traditional sensor fabrication methods. Moreover, the high resistance and poor surface activity of Co3O4 resulted in low gas-sensing performance at room temperature (RT). To overcome these challenges, in-situ sensors based on Co3O4 porous films with controlled nanoscale thickness were directly prepared on ceramic substrates by using Co-MOF films as precursors. To further improve the conductivity, SnO2 catalytic overlayers were introduced on top of Co3O4 sensors to construct SnO2/Co3O4 bilayer sensors, which were promising for triethylamine (TEA) detection at RT. As a result, the optimized SnO2/Co3O4 sensor exhibited a fast response/recovery rate (11 s/16 s), high selectivity, and a satisfactory sensitivity (150%) to TEA at RT. The enhanced gas-sensing performance could be attributed to the unique bilayer structures, improved conductivity, and synergistic effects of the SnO2 catalytic overlayers and Co3O4 sensing layers.
更多
查看译文
关键词
Bilayer sensing films, Room-temperature gas sensor, Triethylamine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要