Range-Nullspace Video Frame Interpolation With Focalized Motion Estimation

CVPR 2023(2023)

引用 1|浏览21
暂无评分
摘要
Continuous-time video frame interpolation is a fundamental technique in computer vision for its flexibility in synthesizing motion trajectories and novel video frames at arbitrary intermediate time steps. Yet, how to infer accurate intermediate motion and synthesize high-quality video frames are two critical challenges. In this paper, we present a novel VFI framework with improved treatment for these challenges. To address the former, we propose focalized trajectory fitting, which performs confidence-aware motion trajectory estimation by learning to pay focus to reliable optical flow candidates while suppressing the outliers. The second is range-nullspace synthesis, a novel frame renderer cast as solving an ill-posed problem addressed by learning decoupled components in orthogonal subspaces. The proposed framework sets new records on 7 of 10 public VFI benchmarks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要