Fusing Pre-Trained Language Models With Multimodal Prompts Through Reinforcement Learning

CVPR 2023(2023)

引用 4|浏览143
暂无评分
摘要
Language models are capable of commonsense reasoning: while domain-specific models can learn from explicit knowledge (e.g. commonsense graphs [6], ethical norms [25]), and larger models like GPT-3 manifest broad commonsense reasoning capacity. Can their knowledge be extended to multimodal inputs such as images and audio without paired domain data? In this work, we propose ESPER (Extending Sensory PErception with Reinforcement learning) which enables text-only pretrained models to address multimodal tasks such as visual commonsense reasoning. Our key novelty is to use reinforcement learning to align multimodal inputs to language model generations without direct supervision: for example, our reward optimization relies only on cosine similarity derived from CLIP and requires no additional paired (image, text) data. Experiments demonstrate that ESPER outperforms baselines and prior work on a variety of multimodal text generation tasks ranging from captioning to commonsense reasoning; these include a new benchmark we collect and release, the ESP dataset, which tasks models with generating the text of several different domains for each image. Our code and data are publicly released at https://github.com/JiwanChung/esper.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要