PreAugNet: improve data augmentation for industrial defect classification with small-scale training data

Journal of Intelligent Manufacturing(2024)

引用 1|浏览26
暂无评分
摘要
With the prevalence of deep learning and convolutional neural network (CNN), data augmentation is widely used for enriching training samples to gain model training improvement. Data augmentation is important when training samples are scarce. This work focuses on improving data augmentation for training an industrial steel surface defect classification network, where the performance is largely depending on the availability of high-quality training samples. It is very difficult to find a sufficiently large dataset for this application in real-world settings. When it comes to synthetic data augmentation, the performance is often degraded by incorrect class labels, and a large effort is required to generate high-quality samples. This paper introduces a novel off-line pre-augmentation network (PreAugNet) which acts as a class boundary classifier that can effectively screen the quality of the augmented samples and improve image augmentation. This PreAugNet can generate augmented samples and update decision boundaries via an independent support vector machine (SVM) classifier. New samples are automatically distributed and combined with the original data for training the target network. The experiments show that these new augmentation samples can improve classification without changing the target network architecture. The proposed method for steel surface defect inspection is evaluated on three real-world datasets: AOI steel defect dataset, MT, and NEU datasets. PreAugNet significantly increases the accuracy by 3.3% (AOI dataset), 6.25% (MT dataset) and 2.1% (NEU dataset), respectively.
更多
查看译文
关键词
Data augmentation,Synthetic sample generation,CNN,Surface defect classification,Decision boundary,PreAugNet
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要