Marigold: Efficient k-means Clustering in High Dimensions.

Very Large Data Bases Conference(2023)

Cited 0|Views24
No score
Abstract
How can we efficiently and scalably cluster high-dimensional data? Thek-means algorithm clusters data by iteratively reducing intra-cluster Euclidean distances until convergence. While it finds applications from recommendation engines to image segmentation, its application to high-dimensional data is hindered by the need to repeatedly compute Euclidean distances among points and centroids. In this paper, we propose Marigold (k-means for high-dimensional data), a scalable algorithm fork-means clustering in high dimensions. Marigold prunes distance calculations by means of (i) a tight distance-bounding scheme; (ii) a stepwise calculation over a multiresolution transform; and (iii) exploiting the triangle inequality. To our knowledge, such an arsenal of pruning techniques has not been hitherto applied tok-means. Our work is motivated by time-critical Angle-Resolved Photoemission Spectroscopy (ARPES) experiments, where it is vital to detect clusters among high-dimensional spectra in real time. In a thorough experimental study with real-world data sets we demonstrate that Marigold efficiently clusters high-dimensional data, achieving approximately one order of magnitude improvement over prior art.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined