A Lattice Chiral Boson Theory in $1+1$d

arXiv (Cornell University)(2023)

引用 1|浏览5
暂无评分
摘要
Chiral field theories describe large classes of matter, from the edges of Quantum Hall systems to the electroweak sector of the Standard Model, but defining them on the lattice has been an ongoing challenge due to a no-go theorem precluding free local models, the potential of symmetry anomalies, and sign problems. Some approaches define a $1+1$d chiral field theory as the edge of a $2+1$d system and argue that the edge decouples from the bulk, but this can be difficult to verify due to finite size effects and strong interactions. On the other hand, recent work has shown how to define the $2+1$d bulk theory as an exactly solvable model with zero correlation length, in which case the edge theory may be extracted exactly. We use these techniques to derive a lattice field theory on a $1+1$d spacetime lattice which carries an anomalous chiral $U(1)$ symmetry with zero chiral central charge. The lattice theory with anomalous chiral $U(1)$ symmetry is always gapless, regardless of lattice interactions. We demonstrate the chiral anomaly by coupling to a background gauge field, develop a field theory which demonstrates the chiral behavior, and show how to assemble a chiral, anomaly-free theory where the gauge field may be taken to be dynamical.
更多
查看译文
关键词
lattice chiral boson theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要