Directed Acyclic Transformer Pre-training for High-quality Non-autoregressive Text Generation

CoRR(2023)

引用 2|浏览68
暂无评分
摘要
Non-AutoRegressive (NAR) text generation models have drawn much attention because of their significantly faster decoding speed and good generation quality in machine translation. However, in a wider range of text generation tasks, existing NAR models lack proper pre-training, making them still far behind the pre-trained autoregressive models. In this paper, we propose Pre-trained Directed Acyclic Transformer (PreDAT) and a novel pre-training task to promote prediction consistency in NAR generation. Experiments on five text generation tasks show that our PreDAT remarkably outperforms existing pre-trained NAR models (+4.2 scores on average) and even achieves better results than pre-trained autoregressive baselines in n-gram-based metrics, along with 17 times speedup in throughput. Further analysis shows that PreDAT benefits from the unbiased prediction order that alleviates the error accumulation problem in autoregressive generation, which provides new insights into the advantages of NAR generation.
更多
查看译文
关键词
text,pre-training,high-quality,non-autoregressive
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要