In vitro and ex vivo characterization of nanonized amniotic membrane particles: An untapped modality for ocular surface reconstruction.

Raja Rajeshwari Thada,Mayadhar Debata, Shuvam Mandal,Deebasuganya Gunasekaran, Vimala Devi Mohan, Niranjana Chandrasekaran,Uma Tiruchirapalli Sivagnanam

Experimental eye research(2023)

引用 1|浏览1
暂无评分
摘要
The pristine Human Amniotic Membrane (HAM) has portrayed outstanding potential as scaffold for ocular surface reconstruction and regeneration. However, in treatment procedures where the supporting membrane matrix of HAM is not obligatory and only the bioactive molecules are vital, the surgical practise of HAM grafting causes redundant trauma and economic burden to the patient. Hence, in our laboratory we have attempted to break down HAM to nanoscale particles and validate its potential as a competent ocular therapeutic agent; by conducting a comparative analysis between the fresh, lyophilized, micronized and Nanonized Amniotic Membrane (NAM) particles. Our results evidently showcased that the prepared NAM particles was <100 nm and the major biomolecules such as collagen and hyaluronic acid were well retained. Further, the NAM particles eluted significantly higher amounts of proteins and growth factors while maintaining its stability and isotonicity when stored at 4 °C. Its biostability was assayed in the presence of lysozyme enzyme. Its remarkable ability to promote cell proliferation in rabbit corneal cells and negative cytotoxicity is an added advantage for ocular application. The ocular biocompatibility of NAM, evaluated by the ex vivo assessment of corneal thickness, transparency, histopathology, immunohistochemistry and corneal permeability clearly indicated its suitability for ophthalmic applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要