Estimate-Then-Optimize Versus Integrated-Estimation-Optimization: A Stochastic Dominance Perspective

CoRR(2023)

引用 0|浏览13
暂无评分
摘要
In data-driven stochastic optimization, model parameters of the underlying distribution need to be estimated from data in addition to the optimization task. Recent literature suggests the integration of the estimation and optimization processes, by selecting model parameters that lead to the best empirical objective performance. Such an integrated approach can be readily shown to outperform simple ``estimate then optimize" when the model is misspecified. In this paper, we argue that when the model class is rich enough to cover the ground truth, the performance ordering between the two approaches is reversed for nonlinear problems in a strong sense. Simple ``estimate then optimize" outperforms the integrated approach in terms of stochastic dominance of the asymptotic optimality gap, i,e, the mean, all other moments, and the entire asymptotic distribution of the optimality gap is always better. Analogous results also hold under constrained settings and when contextual features are available. We also provide experimental findings to support our theory.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要