Oxidized dextran-crosslinked ferrocene-chitosan-PEI composite porous material integrating adsorption and degradation to malachite green.

Shanjuan Zhao, Huan Xie,Xutao Tang, Guoqiang Lu,Yongmin Zhang

Carbohydrate polymers(2023)

引用 8|浏览1
暂无评分
摘要
Treating wastewater containing malachite green (MG) using porous materials with both adsorption and degradation functions have become a major challenge in achieving the carbon neutrality goal. Herein by incorporating the ferrocene (Fc) group as a Fenton active center, a novel composite porous material (DFc-CS-PEI) was prepared using chitosan (CS) and polyethyleneimine (PEI) as skeletons and oxidized dextran as a crosslinker. DFc-CS-PEI not only possesses satisfactory adsorption performance to MG but also excellent degradability in the presence of a minor amount of H2O2 (3.5 mmol/L) without any additional assistance, due to high specific surface area and active Fc group. The maximum adsorption capacity is ca. 177.73 ± 3.11 mg/g, outperforming most CS-based adsorbents. The removal efficiency of MG is significantly enhanced from 20 % to 90 % as DFc-CS-PEI and H2O2 coexist, due to ·OH-dominated Fenton reaction, and remained in a wide pH range (2.0-7.0). Cl- exhibits notable suppression on the degradation of MG because of quenching effects. Note that DFc-CS-PEI has a very small iron leaching (0.2 ± 0.015 mg/L), and can be rapidly recycled by simple water-washing, without any harmful chemicals and potential second pollution. Such versatility, high stability, and green recyclability make the as-prepared DFc-CS-PEI a promising porous material for the treatment of organic wastewater.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要