Universal embodied intelligence: learning from crowd, recognizing the world, and reinforced with experience

Luo Ji, Longfei Ma,Chang Zhou,Fei Wu大牛学者,Hongxia Yang

ICLR 2023(2023)

引用 0|浏览82
The interactive artificial intelligence in the motion control field is an interesting topic, especially when universal knowledge adaptive to multiple task and universal environments is wanted. Although there are increasing efforts on Reinforcement learning (RL) studies with the assistance of transformers, it might subject to the limitation of the offline training pipeline, in which the exploration and generalization ability is prohibited. Motivated by the cognitive and behavioral psychology, such agent should have the ability to learn from others, recognize the world, and practice itself based its own experience. In this study, we propose the framework of Online Decision MetaMorphFormer (ODM) which attempts to achieve the above learning modes, with a unified model architecture to both highlight its own body perception and produce action and observation predictions. ODM can be applied on any arbitrary agent with a multi-joint body, located in different environments, trained with different type of tasks. Large-scale pretrained dataset are used to warmup ODM while the targeted environment continues to reinforce the universal policy. Substantial interactive experiments as well as few-shot and zero-shot tests in unseen environments and never-experienced tasks verify ODM's performance, and generalization ability. Our study shed some lights on research of general artificial intelligence on the embodied and cognitive field studies.
reinforcement learning,transformer,morphology,pretrain,finetune,generalization
AI 理解论文