3D-IntPhys: Learning 3D Visual Intuitive Physics for Fluids, Rigid Bodies, and Granular Materials
ICLR 2023(2023)
摘要
Given a visual scene, humans have strong intuitions about how a scene can evolve over time under given actions. The intuition, often termed visual intuitive physics, is a critical ability that allows us to make effective plans to manipulate the scene to achieve desired outcomes without relying on extensive trial and error. In this paper, we present a framework capable of learning 3D-grounded visual intuitive physics models purely from unlabeled images. Our method is composed of a conditional Neural Radiance Field (NeRF)-style visual frontend and a 3D point-based dynamics prediction backend, in which we impose strong relational and structural inductive bias to capture the structure of the underlying environment. Unlike existing intuitive point-based dynamics works that rely on the supervision of dense point trajectory from simulators, we relax the requirements and only assume access to multi-view RGB images and (imperfect) instance masks. This enables the proposed model to handle scenarios where accurate point estimation and tracking are hard or impossible. We evaluate the models on three challenging scenarios involving fluid, granular materials, and rigid objects, where standard detection and tracking methods are not applicable. We show our model can make long-horizon future predictions by learning from raw images and significantly outperforms models that do not employ an explicit 3D representation space. We also show that, once trained, our model can achieve strong generalization in complex scenarios under extrapolate settings.
更多查看译文
关键词
Visual Intuitive Physics,Neural Implicit Representations,Graph Neural Networks,Learning-Based Dynamics Modeling,Particle-Based Dynamics
AI 理解论文
溯源树
样例

生成溯源树,研究论文发展脉络