Stabilizing Copper by a Reconstruction-Resistant Atomic Cu-O-Si Interface for Electrochemical CO2 Reduction

Journal of the American Chemical Society(2023)

引用 9|浏览21
暂无评分
摘要
Copper (Cu), a promising catalyst for electrochemical CO2 reduction (CO2R) to multi-electron reduction products, suffers from an unavoidable and uncontrollable reconstruction process during the reaction, which not only may lead to catalyst deactivation but also brings great challenges to the exploration of the structure-performance relationship. Herein, we present an efficient strategy for stabilizing Cu with silica and synthesize reconstruction-resistant CuSiOx amorphous nanotube catalysts with abundant atomic Cu-O-Si interfacial sites. The strong interfacial interaction between Cu and silica makes the Cu-O-Si interfacial sites ultrastable in the CO2R reaction without any apparent reconstruction, thus exhibiting high CO2-to-CH4 selectivity (72.5%) and stability (FECH4 remains above 60% after 12 h of test). A remarkable CO2-to-CH4 conversion rate of 0.22 mu mol cm-2 s-1 was also achieved in a flow cell device. This work provides a very promising route for the design of highly active and stable Cu-based CO2R catalysts.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要