Simulation Study of Phase-Driven Multichannel Nano-Optical Conveyor Belt Using Rectangular Gratings

PHOTONICS(2023)

引用 0|浏览3
暂无评分
摘要
A nano-optical conveyor belt is a unique type of near-field optical tweezer, capable not only of capturing nanoparticles, but also transporting them. In this study, we propose a multichannel nano-optical conveyer, based on a simple rectangular distributed grating array. The design was optimized by varying the number of slits in the gratings, and particle transport was achieved by adjusting the phase difference of the excitation beams. Simulation and calculation results indicate that multiple optical traps and parallel transport channels can be generated by exciting the gratings with four incident beams. The optical force and trapping potential were used to confirm that 20 nm metallic nanoparticles can be stably attracted to the traps and dynamically transported along channels by adjusting the phase of the excitation beams. Compared to existing nano-photon conveyors, this design boasts a straightforward structure and exceptional performance, offering a promising new approach to particle manipulation.
更多
查看译文
关键词
optical trapping,nano-optical conveyor belt,surface-plasmon polaritons (SPPs)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要