Multimechanism Collaborative Superior Antioxidant CDzymes To Alleviate Salt Stress-Induced Oxidative Damage in Plant Growth

ACS SUSTAINABLE CHEMISTRY & ENGINEERING(2023)

引用 1|浏览8
暂无评分
摘要
Salt stress has become one major environmental challenge threatening global crop yield. Targeting salt-induced oxidative stress, nanozymes with high-efficiency antioxidant activity and good biocompatibility represent an effective way to improve plant salt tolerance. In this study, carbon dot nanozymes (CDzymes) derived from glucose and histidine are designed to alleviate salt-induced oxidative stress in plant growth. The CDzymes are comprehensively characterized to exhibit broad-spectrum antioxidant capability, allowing them to efficiently scavenge reactive oxygen species (center dot OH, O2-center dot, H2O2), reactive nitrogen species (center dot NO and ONOO-), and stable free radicals (DPPH center dot, ABTS center dot+, PTIO center dot). Due to their unique structure, CDzymes exhibit multiple antioxidant mechanisms involving electron transfer, H atom transfer, and enzyme-like catalytic behavior. CDzymes have good biocompatibility and can help promote the growth of Pisum sativum Linn and Eucommia under salinity. CDzyme treatment can significantly (p < 0.001) relieve salt stress-induced oxidative damage of biological components (including chlorophyll, proline, carbohydrate, and protein) and redox enzyme activity, which underlies the mechanism of salt-induced plant wilt. This study demonstrates that CDzymes can act as a potential antioxidant to modulate the level of oxidative stress in biological systems, opening up new avenues for agricultural salt stress management in crops.
更多
查看译文
关键词
carbon dots,nanozyme,antioxidant,salt stress,oxidative damage
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要