Magnetic and Electronic Properties of Edge-Modified Triangular WS2 and MoS2 Quantum Dots

CRYSTALS(2023)

引用 6|浏览4
暂无评分
摘要
The magnetic and electronic properties of zigzag-triangular WS2 and MoS2 quantum dots are investigated using density functional theory calculations. The pristine WS2 and MoS2 nanodots hold permanent spin on their edges which originates from the unpaired electrons of the transition metals at the edges. The ferromagnetic spin ordering in zigzag-triangular WS2 and MoS2 can be transformed to antiferromagnetic ordering with S = 0 and to nonmagnetic, respectively, by edge passivation with 2H. The calculations of the Curie Temperature indicate that these magnetic states are stable and withstand room temperature. The paramagnetic susceptibility of these structures significantly decreases by edge sulfuration. Moreover, it can be converted to diamagnetic susceptibility by edge passivation with 2H as found in WS2 nanodots. These structures are semiconductors with energy gaps of similar to 3.3 eV that decrease unexpectedly by edge passivation due to the existence of lone pairs from S atoms that give a high contribution to the low-energy molecular orbitals. With these preferable magnetic properties and controlled electronic ones, WS2 and MoS2 quantum dots are potential candidates for spintronic applications.
更多
查看译文
关键词
WS2 and MoS2 quantum dots,DFT,magnetic and electronic properties,magnetic susceptibility,spintronics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要