Superheavy Elements in Kilonovae

ASTROPHYSICAL JOURNAL LETTERS(2023)

引用 0|浏览23
暂无评分
摘要
As LIGO-Virgo-KAGRA enters its fourth observing run, a new opportunity to search for electromagnetic counterparts of compact object mergers will also begin. The light curves and spectra from the first "kilonova" associated with a binary neutron star binary (NSM) suggests that these sites are hosts of the rapid neutron capture ("$r$") process. However, it is unknown just how robust elemental production can be in mergers. Identifying signposts of the production of particular nuclei is critical for fully understanding merger-driven heavy-element synthesis. In this study, we investigate the properties of very neutron rich nuclei for which superheavy elements ($Z\geq 104$) can be produced in NSMs and whether they can similarly imprint a unique signature on kilonova light-curve evolution. A superheavy-element signature in kilonovae represents a route to establishing a lower limit on heavy-element production in NSMs as well as possibly being the first evidence of superheavy element synthesis in nature. Favorable NSMs conditions yield a mass fraction of superheavy elements is $X_{Z\geq 104}\approx 3\times 10^{-2}$ at 7.5 hours post-merger. With this mass fraction of superheavy elements, we find that kilonova light curves may appear similar to those arising from lanthanide-poor ejecta. Therefore, photometric characterizations of superheavy-element rich kilonova may possibly misidentify them as lanthanide-poor events.
更多
查看译文
关键词
kilonovae,elements
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要