MEGClass: Text Classification with Extremely Weak Supervision via Mutually-Enhancing Text Granularities

CoRR(2023)

引用 0|浏览41
暂无评分
摘要
Text classification typically requires a substantial amount of human-annotated data to serve as supervision, which is costly to obtain in dynamic emerging domains. Certain methods seek to address this problem by solely relying on the surface text of class names to serve as extremely weak supervision. However, existing methods fail to account for single-class documents discussing multiple topics. Both topic diversity and vague sentences may introduce noise into the document's underlying representation and consequently the precision of the predicted class. Furthermore, current work focuses on text granularities (documents, sentences, or words) independently, which limits the degree of coarse- or fine-grained context that we can jointly extract from all three to identify significant subtext for classification. In order to address this problem, we propose MEGClass, an extremely weakly-supervised text classification method to exploit Mutually-Enhancing Text Granularities. Specifically, MEGClass constructs class-oriented sentence and class representations based on keywords for performing a sentence-level confidence-weighted label ensemble in order to estimate a document's initial class distribution. This serves as the target distribution for a multi-head attention network with a class-weighted contrastive loss. This network learns contextualized sentence representations and weights to form document representations that reflect its original document and sentence-level topic diversity. Retaining this heterogeneity allows MEGClass to select the most class-indicative documents to serve as iterative feedback for enhancing the class representations. Finally, these top documents are used to fine-tune a pre-trained text classifier. As demonstrated through extensive experiments on six benchmark datasets, MEGClass outperforms other weakly and extremely weakly supervised methods.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要