Boosting electrocatalytic CO2 reduction to formate via carbon nanofiber encapsulated bismuth nanoparticles with ultrahigh mass activity

Chinese Journal of Catalysis(2023)

引用 8|浏览0
暂无评分
摘要
Electrochemical CO2 conversion is one of the most promising technologies to achieve carbon neutrality. However, it still suffers from some nonnegligible challenges on low production rate and unsatisfied current densities for potential large-scale applications. Herein, we prepare ultrasmall Bi nanoparticles uniformly encapsulated in the carbon nanofibers through electrospinning techniques, which is denoted as Bi/CNFs-900. Gratifyingly, this Bi/CNFs-900 catalyst demonstrates excellent performance and stability on CO2 electro-reduction in a broad potential window. Specifically, it can produce formate with a Faradaic efficiency over 90% and a high partial current density of –235.3 mA cm−2 at −1.23 V vs. RHE in a flow-cell. Furthermore, the confinement effect of carbon nanofibers largely restricts the severe aggregation of bismuth nanoparticles during synthesis as well as electrolysis procedure, which greatly increases the accessible active sites and decreases the actual mass fraction of bismuth composition. Consequently, Bi/CNFs-900 not only achieves ultrahigh mass activity of –1.6 A mgBi−1, but also possesses an unprecedented formate production rate of 4403.3 μmol h−1 cm−2. DFT calculations and in situ Raman spectroscopy further uncover the possible reaction mechanism for CO2 reduction toward formate. These results could provide an economical and industrial-viable strategy for the preparation of electrocatalysts in CO2 reduction.
更多
查看译文
关键词
electrocatalytic co2 reduction,bismuth nanoparticles,carbon nanofiber
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要