GlyphDraw: Learning to Draw Chinese Characters in Image Synthesis Models Coherently

CoRR(2023)

Cited 0|Views18
No score
Abstract
Recent breakthroughs in the field of language-guided image generation have yielded impressive achievements, enabling the creation of high-quality and diverse images based on user instructions. Although the synthesis performance is fascinating, one significant limitation of current image generation models is their insufficient ability to generate coherent text within images, particularly for complex glyph structures like Chinese characters. To address this problem, we introduce GlyphDraw, a general learning framework aiming at endowing image generation models with the capacity to generate images embedded with coherent text. To the best of our knowledge, this is the first work in the field of image synthesis to address the generation of Chinese characters. % we first adopt the OCR technique to collect images with Chinese characters as training samples, and extract the text and locations as auxiliary information. We first sophisticatedly design the image-text dataset's construction strategy, then build our model specifically on a diffusion-based image generator and carefully modify the network structure to allow the model to learn drawing Chinese characters with the help of glyph and position information. Furthermore, we maintain the model's open-domain image synthesis capability by preventing catastrophic forgetting by using a variety of training techniques. Extensive qualitative and quantitative experiments demonstrate that our method not only produces accurate Chinese characters as in prompts, but also naturally blends the generated text into the background. Please refer to https://1073521013.github.io/glyph-draw.github.io
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined