A Prediction System Service.

ASPLOS (2)(2023)

引用 0|浏览18
暂无评分
摘要
To better facilitate application performance programming we propose a software optimization strategy enabled by a novel low-latency Prediction System Service (PSS). Rather than relying on nuanced domain-specific knowledge or slapdash heuristics, a system service for prediction encourages programmers to spend their time uncovering new levers for optimization rather than worrying about the details of their control. The core idea is to write optimizations that improve performance in specific cases, or under specific tunings, and leave the decision of how and when exactly to apply those optimizations to the system to learn through feedback-directed learning. Such a prediction service can be implemented in any number of ways, including as a shared library that can be easily reused by software written in different programming languages, and opens the door to both new software optimization patterns and hardware design possibilities. As a demonstration of the utility of this approach, we show that three very different application-targeted optimization scenarios can each benefit from even a very straightforward perceptron-based implementation of the PSS as long as the service latency can be held low. First, we show that PSS can be used to more intelligently guide hardware lock elision with resulting speedups over a baseline implementation by 34% on average. Second, we show that a PSS can find good configuration parameters for PyPy’s Just-In-Time (JIT) compiler resulting in 15% speedup on average. Last, we show PSS can guide the page reclamation task within a kernel memory management subsystem to reduce the average memory latency by 33% on average. In all three cases, this new optimization pattern with service support is able to meet or beat the best-known hand-crafted methods with a fraction of the complexity.
更多
查看译文
关键词
software optimization, runtime optimization, perceptron, Operation System, hardware lock elision, Just-In-Time compiler, memory management
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要