Power Side-channel Countermeasures for ARX Ciphers using High-level Synthesis.

FPGA(2023)

引用 0|浏览6
暂无评分
摘要
In the era of Internet of Things (IoT), edge devices are considerably diversified and are often designed using high-level synthesis (HLS) to improve design-productivity. A problem here is that HLS tools were originally developed in a security-unaware fashion, inducing vulnerabilities to power side-channel attacks (PSCA), which is a serious threat in IoT. Although PSCA vulnerabilities induced by HLS tools recently started to be discussed, the effects and applicability of existing methods for PSCA-resistant designs using HLS are limited so far. In this paper, we propose a novel HLS-based design method for PSCA-resistant ciphers in hardware. Particularly focusing on lightweight block ciphers composed of Addition-Rotation-XOR (ARX)-based permutations, we studied the effects of applying ''threshold implementation'', one of the provably secure countermeasures against PSCA, to behavioral descriptions of the ciphers. In addition, we tuned the scheduling optimization of HLS tools that might cause power side-channel leakage. In our experiment, using ARX-based ciphers (Chaskey, Simon, and Speck) as benchmarks, we implemented the unprotected and protected circuit on FPGA and evaluated the PSCA vulnerability using Welch's t-test. The results demonstrated that our proposed method can successfully mitigate vulnerabilities to PSCA for all benchmarks. From these results, we provide further discussion on the direction of PSCA countermeasures based on HLS.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要