Development of biodegradable nanogels for lipase accelerated drug release of 5-aminolevulinic acid.

Colloids and surfaces. B, Biointerfaces(2023)

引用 1|浏览3
暂无评分
摘要
Photodynamic therapy (PDT) using 5-aminolevulinic acid (5-ALA) is an important approach for the treatment of some skin diseases and cancers. A major defect of this approach is that it is difficult for 5-ALA to accumulate around lesions in deeper regions of tissue, resulting in poor conversion to the active fluorophore and photodynamic efficiencies. Because of their targeting and controlled release abilities, nanogel carriers could solve this problem. In this paper, nanogels were prepared by using micro-emulsion polymerization with various biodegradable polyester crosslinkers (L-lactide and ε-caprolactone). The swelling and degradation properties and entrapment efficiency, drug loading and drug release ability of the nanogels were investigated. Nanogels co-cultured with skin cancer cells (A2058) allowed the efficiency of the PDT in vitro to be demonstrated. The results showed that the swelling rate of hydrogels reduced with increasing crosslinker levels, which caused a slow-down in the release of 5-ALA, but lipase accelerated degradation of nanogels increased 5-ALA concentrations in tumor cells and leading to higher PDT efficiency. It was proved by in vivo experiment indicating that the development of skin cancer tissues were efficiently inhibited by the 5-ALA loaded nanogels.
更多
查看译文
关键词
5-ALA,Biodegradable polyester crosslinker,Controlled drug release,Nanogels,Photodynamic therapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要