PSAC-PDB: Analysis and classification of protein structures.

Computers in biology and medicine(2023)

Cited 1|Views49
No score
Abstract
This paper presents a novel framework, called PSAC-PDB, for analyzing and classifying protein structures from the Protein Data Bank (PDB). PSAC-PDB first finds, analyze and identifies protein structures in PDB that are similar to a protein structure of interest using a protein structure comparison tool. Second, the amino acids (AA) sequences of identified protein structures (obtained from PDB), their aligned amino acids (AAA) and aligned secondary structure elements (ASSE) (obtained by structural alignment), and frequent AA (FAA) patterns (discovered by sequential pattern mining), are used for the reliable detection/classification of protein structures. Eleven classifiers are used and their performance is compared using six evaluation metrics. Results show that three classifiers perform well on overall, and that FAA patterns can be used to efficiently classify protein structures in place of providing the whole AA sequences, AAA or ASSE. Furthermore, better classification results are obtained using AAA of protein structures rather than AA sequences. PSAC-PDB also performed better than state-of-the-art approaches for SARS-CoV-2 genome sequences classification.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined