Atomic Level Interactions and Suprastructural Configuration of Plant Cell Wall Polymers in Dialkylimidazolium Ionic Liquids

Biomacromolecules(2023)

引用 0|浏览4
暂无评分
摘要
Ionic liquids (ILs) have been widely investigated for the pretreatment and deconstruction of lignocellulosic feedstocks. However, the modes of interaction between IL-anions and cations, and plant cell wall polymers, namely, cellulose, hemicellulose, and lignin, as well as the resulting ultrastructural changes are still unclear. In this study, we investigated the atomic level and suprastructural interactions of microcrystalline cellulose, birch wood xylan, and organosolv lignin with 1,3-dialkylimidazolium ILs having varying sizes of carboxylate anions. Analysis by 13C NMR spectroscopy indicated that cellulose and lignin exhibited stronger hydrogen bonding with acetate ions than with formate ions, as evidenced by greater chemical shift changes. Small-angle X-ray scattering analysis showed that while both cellulose and xylan adopted a single-stranded conformation in acetate-ILs, twice as many acetate ions were bound to one anhydroglucose unit than to an anhydroxylose unit. We also determined that a minimum of seven representative carbohydrate units must interact with an anion for that IL to effectively dissolve cellulose or xylan. Lignin is associated as groups of four polymer molecules in formate-ILs and dispersed as single molecules in acetate-ILs, which indicates that it is highly soluble in the latter. In summary, our study demonstrated that 1,3-dialkylimidazolium acetates displayed stronger binding interactions with cellulose and lignin, as compared to formates, and thus have superior potential to fractionate these polymers from lignocellulosic feedstocks.
更多
查看译文
关键词
ionic liquids,plant cell wall polymers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要