Breathe-squeeze: pharmacodynamics of a stimulus-free behavioural paradigm to track conscious states during sedation☆.

British journal of anaesthesia(2023)

引用 1|浏览14
暂无评分
摘要
BACKGROUND:Conscious states are typically inferred through responses to auditory tasks and noxious stimulation. We report the use of a stimulus-free behavioural paradigm to track state transitions in responsiveness during dexmedetomidine sedation. We hypothesised that estimated dexmedetomidine effect-site (Ce) concentrations would be higher at loss of responsiveness (LOR) compared with return of responsiveness (ROR), and both would be lower than comparable studies that used stimulus-based assessments. METHODS:Closed-Loop Acoustic Stimulation during Sedation with Dexmedetomidine data were analysed for secondary analysis. Fourteen healthy volunteers were asked to perform the breathe-squeeze task of gripping a dynamometer when inspiring and releasing it when expiring. LOR was defined as five inspirations without accompanied squeezes; ROR was defined as the return of five inspirations accompanied by squeezes. Brain states were monitored using 64-channel EEG. Dexmedetomidine was administered as a target-controlled infusion, with Ce estimated from a pharmacokinetic model. RESULTS:Counter to our hypothesis, mean estimated dexmedetomidine Ce was lower at LOR (0.92 ng ml-1; 95% confidence interval: 0.69-1.15) than at ROR (1.43 ng ml-1; 95% confidence interval: 1.27-1.58) (paired t-test; P=0.002). LOR was characterised by progressively increasing fronto-occipital EEG power in the 0.5-8 Hz band and loss of occipital alpha (8-12 Hz) and global beta (16-30 Hz) power. These EEG changes reverted at ROR. CONCLUSIONS:The breathe-squeeze task can effectively track changes in responsiveness during sedation without external stimuli and might be more sensitive to state changes than stimulus-based tasks. It should be considered when perturbation of brain states is undesirable. CLINICAL TRIAL REGISTRATION:NCT04206059.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要