Interface engineering of Mn3O4/Co3O4 S-scheme heterojunctions to enhance the photothermal catalytic degradation of toluene.

Journal of hazardous materials(2023)

引用 2|浏览14
暂无评分
摘要
Transition metal oxides have high photothermal conversion capacity and excellent thermal catalytic activity, and their photothermal catalytic ability can be further improved by reasonably inducing the photoelectric effect of semiconductors. Herein, Mn3O4/Co3O4 composites with S-scheme heterojunctions were fabricated for photothermal catalytic degradation of toluene under ultraviolet-visible (UV-Vis) light irradiation. The distinct hetero-interface of Mn3O4/Co3O4 effectively increases the specific surface area and promotes the formation of oxygen vacancies, thus facilitating the generation of reactive oxygen species and migration of surface lattice oxygen. Theoretical calculations and photoelectrochemical characterization demonstrate the existence of a built-in electric field and energy band bending at the interface of Mn3O4/Co3O4, which optimizes the photogenerated carriers' transfer path and retains a higher redox potential. Under UV-Vis light irradiation, the rapid transfer of electrons between interfaces promotes the generation of more reactive radicals, and the Mn3O4/Co3O4 shows a substantial improvement in the removal efficiency of toluene (74.7%) compared to single metal oxides (53.3% and 47.5%). Moreover, the possible photothermal catalytic reaction pathways of toluene over Mn3O4/Co3O4 were also investigated by in situ DRIFTS. The present work offers valuable guidance toward the design and fabrication of efficient narrow-band semiconductor heterojunction photothermal catalysts and provides deeper insights into the mechanism of photothermal catalytic degradation of toluene.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要