VILA: Learning Image Aesthetics from User Comments with Vision-Language Pretraining

CoRR(2023)

引用 15|浏览87
暂无评分
摘要
Assessing the aesthetics of an image is challenging, as it is influenced by multiple factors including composition, color, style, and high-level semantics. Existing image aesthetic assessment (IAA) methods primarily rely on human-labeled rating scores, which oversimplify the visual aesthetic information that humans perceive. Conversely, user comments offer more comprehensive information and are a more natural way to express human opinions and preferences regarding image aesthetics. In light of this, we propose learning image aesthetics from user comments, and exploring vision-language pretraining methods to learn multimodal aesthetic representations. Specifically, we pretrain an image-text encoder-decoder model with image-comment pairs, using contrastive and generative objectives to learn rich and generic aesthetic semantics without human labels. To efficiently adapt the pretrained model for downstream IAA tasks, we further propose a lightweight rank-based adapter that employs text as an anchor to learn the aesthetic ranking concept. Our results show that our pretrained aesthetic vision-language model outperforms prior works on image aesthetic captioning over the AVA-Captions dataset, and it has powerful zero-shot capability for aesthetic tasks such as zero-shot style classification and zero-shot IAA, surpassing many supervised baselines. With only minimal fine-tuning parameters using the proposed adapter module, our model achieves state-of-the-art IAA performance over the AVA dataset.(1)
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络