Atrazine exposure can dysregulate the immune system and increase the susceptibility against pathogens in honeybees in a dose-dependent manner.

Journal of hazardous materials(2023)

引用 3|浏览14
暂无评分
摘要
Recently, concerns regarding the impact of agrochemical pesticides on non-target organisms have increased. The effect of atrazine, the second-most widely used herbicide in commercial farming globally, on honeybees remains poorly understood. Here, we evaluated how atrazine impacts the survival of honeybees and pollen and sucrose consumption, investigating the morphology and mRNA expression levels of midgut tissue, along with bacterial composition (relative abundance) and load (absolute abundance) in the whole gut. Atrazine did not affect mortality, but high exposure (37.3 mg/L) reduced pollen and sucrose consumption, resulting in peritrophic membrane dysplasia. Sodium channels and chitin synthesis were considered potential atrazine targets, with the expression of various genes related to lipid metabolism, detoxification, immunity, and chemosensory activity being inhibited after atrazine exposure. Importantly, 37.3 mg/L atrazine exposure substantially altered the composition and size of the gut microbial community, clearly reducing both the absolute and relative abundance of three core gram-positive taxa, Lactobacillus Firm-5, Lactobacillus Firm-4, and Bifidobacterium asteroides. With altered microbiome composition and a weakened immune system following atrazine exposure, honeybees became more susceptible to infection by the opportunistic pathogen Serratia marcescens. Thus, considering its scale of use, atrazine could negatively impact honeybee populations worldwide, which may adversely affect global food security.
更多
查看译文
关键词
Atrazine,Honeybee,Gut microbiome,Immunity impairment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要