Probing C-I Bond Fission in the UV Photochemistry of 2-Iodothiophene with Core-to-Valence Transient Absorption Spectroscopy

arxiv(2023)

引用 0|浏览26
暂无评分
摘要
The UV photochemistry of small heteroaromatic molecules serves as a testbed for understanding fundamental photoinduced transformations in moderately complex compounds, including isomerization, ring-opening, and molecular dissociation. Here, a combined experimental-theoretical study of 268 nm UV light-induced dynamics in 2-iodothiophene (C$_4$H$_3$IS) is performed. The dynamics are experimentally monitored with a femtosecond XUV probe pulse that measures iodine N-edge 4d core-to-valence transitions. Experiments are complemented by density functional theory calculations of both the pump-pulse induced valence excitations as well as the XUV probe-induced core-to-valence transitions. Possible intramolecular relaxation dynamics are investigated by ab initio molecular dynamics simulations. Gradual absorption changes up to ~0.5-1 ps after excitation are observed for both the parent molecular species and emerging iodine fragments, with the latter appearing with a characteristic rise time of 160$\pm$30 fs. Comparison of spectral intensities and energies with the calculations identify an iodine dissociation pathway initiated by a predominant $\pi\to\pi^*$ excitation. In contrast, initial excitation to a nearby n$_\perp\to\sigma^*$ excited state appears unlikely based on a significantly smaller oscillator strength and the absence of any corresponding XUV absorption signatures. Excitation to the $\pi\to\pi^*$ state is followed by contraction of the C-I bond, enabling a nonadiabatic transition to a dissociative $\pi\to\sigma_\textrm{C-I}^*$ state. For the subsequent fragmentation, a narrow bond-length region along the C-I stretch coordinate between 260 and 280 pm is identified, where the transition between the parent molecule and the thienyl radical + iodine atom products becomes prominent in the XUV spectrum due to rapid localization of two singly-occupied molecular orbitals on the two fragments.
更多
查看译文
关键词
uv photochemistry,bond fission,core-to-valence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要