An optimization approach for studying the effect of lattice unit cell's design-based factors on additively manufactured poly methyl methacrylate cranio-implant

Journal of the Mechanical Behavior of Biomedical Materials(2023)

引用 55|浏览0
暂无评分
摘要
In craniomaxillofacial surgery the inclusion of lattice structure on the Cranio-implants for the surgical procedure of cranial defects is difficult. Additive manufacturing open ups a huge space for the development of intricate profiles for complex surgical practices. Designing lattice structures with various design topologies has gained more interest in the medical community for reducing the weight of the implants in the cranial region. This research proposes the mimicking of cranial defective portion concerning bone-like porous structure by means of Poly methyl methacrylate (PMMA) material via 3D printing technology. The experiments were optimized by incorporating square-type porous lattice structure in the development of cranial implants. The design-based factors of the unit cell were enhanced with the aid of the Design of experiments (DOE) technique. L9 orthogonal array is developed by incorporating various design-based factors of the lattice unit cell like unit cell size (mm), skewing angle (°), wall thickness (mm), and unit cell orientation (°). The experiments are optimized with respect to obtaining better compressive strength and compressive strength/density of the prepared lattice structure incorporated polymeric samples. The result shows that for obtaining the maximum compressive strength in the porous square lattice-structured PMMA compression samples will be a lower cell size of 2 mm, a higher skewing angle of 30°, a higher wall thickness of 1 mm, and a unit cell orientation of 90°. The experimental optimized condition results of the design-based factors achieve the maximum compressive strength and compressive strength/density of 83.37 MPa and 189.73 MPa/g mm−3. The lattice structure orientated with 90° has a significant contribution towards reducing the development of structural deviations of incorporating square lattice structure on the PMMA polymeric material. Therefore, the topologically modified square lattice structure incorporated 3D printed PMMA material has a potential scope for the replacement of conventional maxillofacial cranial implants.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要