Insights into the responses of fungal taxonomy and function to different metal(loid) contamination levels.

The Science of the total environment(2023)

引用 2|浏览5
暂无评分
摘要
Fungi possess prominent tolerance and detoxification capacities in highly metal(loid)-polluted systems, yet little is known about their responding behaviors under different contamination conditions. Here, we systematically investigated the structure and function profiles of fungal communities in an abandoned reservoir mainly contaminated by multiple metal(loid)s such as Al, Be, Cd, Co, Cr, and Cu. This abandoned reservoir consisted of three distinct zones, i.e., Zone I with the shortest deprecation time and the highest metal(loid) contamination; Zone II with the medium deprecation time and medium metal(loid) contamination; and Zone III with the longest abandonment time and the lowest metal(loid)contamination. The lowest pH and the highest contents of OM, TN, and TP were also observed for the high-contamination Zone I, followed by the moderate-contamination Zone II and the low-contamination Zone III. Fungal biodiversity was found to be robust and dominated by many endurable genera in Zone I, and notable cooperative relationships among fungal species facilitated their viability and prosperity under severe metal(loid) contaminations. Differently, the lowest biodiversity and fragile co-occurrence network were identified in Zone II. As metal(loid) contaminations reduced from Zone I to Zone III, dominant fungal functions gradually changed from undefined saprotroph guild to parasites or pathogens of plant-animal (i.e. animal pathogen, endophyte, and plant pathogen). Moreover, metal(loid)s combined with physicochemical properties jointly mediated the fungal taxonomic and functional responses to different metal(loid) contamination levels. Overall, this study not only broadens the understanding of taxonomic and functional repertoires of fungal communities under different metal(loid) contaminated conditions, but also highlights the crucial contributions of specific fungi to bioremediation and management in varying metal(loid)-polluted environments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要