FLOAT: Fast Learnable Once-for-All Adversarial Training for Tunable Trade-off Between Accuracy and Robustness.
2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV)(2023)
Intel Labs
Abstract
Existing models that achieve state-of-the-art (SOTA) performance on both clean and adversarially-perturbed images rely on convolution operations conditioned with feature-wise linear modulation (FiLM) layers. These layers require additional parameters and are hyperparameter sensitive. They significantly increase training time, memory cost, and potential latency which can be costly for resource-limited or real-time applications. In this paper, we present a fast learnable once-for-all adversarial training (FLOAT) algorithm, which instead of the existing FiLM-based conditioning, presents a unique weight conditioned learning that requires no additional layer, thereby incurring no significant increase in parameter count, training time, or network latency compared to standard adversarial training. In particular, we add configurable scaled noise to the weight tensors that enables a trade-off between clean and adversarial performance. Extensive experiments show that FLOAT can yield SOTA performance improving both clean and perturbed image classification by up to ~6% and ~10%, respectively. Moreover, real hardware measurement shows that FLOAT can reduce the training time by up to 1.43× with fewer model parameters of up to 1.47× on iso-hyperparameter settings compared to the FiLM-based alternatives. Additionally, to further improve memory efficiency we introduce FLOAT sparse (FLOATS), a form of non-iterative model pruning and provide detailed empirical analysis in yielding a three-way accuracy-robustness-complexity trade-off for these new class of pruned conditionally trained models.
MoreTranslated text
Key words
Algorithms: Machine learning architectures,formulations,and algorithms (including transfer),Adversarial learning,adversarial attack and defense methods,Embedded sensing/real-time techniques
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined