Designing Deep Neural High-Density Compression Engines for Radiology Images

Circuits Syst. Signal Process.(2022)

引用 0|浏览1
暂无评分
摘要
As a speciality, radiology produces the highest volume of medical images in clinical establishments compared to other commonly employed imaging modalities like digital pathology, ophthalmic imaging, etc. Archiving this massive quantity of images with large file sizes is a major problem since the costs associated with storing medical images continue to rise with an increase in cost of electronic storage devices. One of the possible solutions is to compress them for effective storage. The prime challenge is that each modality is distinctively characterized by dynamic range and resolution of the signal and its spatial and statistical distribution. Such variations in medical images are different from camera-acquired natural scene images. Thus, conventional natural image compression algorithms such as J2K and JPEG often fail to preserve the clinically relevant details present in medical images. We address this challenge by developing a modality-specific compressor and a modality-agnostic generic decompressor implemented using a deep neural network (DNN) and capable of preserving clinically relevant image information. Architecture of the DNN is obtained through design space exploration (DSE) with the objective to feature the least computational complexity at the highest compression and a target high-quality factor, thereby leading to a low power requirement for computation. The neural compressed bitstream is further compressed using the lossless Huffman encoding to obtain a variable bit length and high-density compression ( 20× -400× ). Experimental validation is performed on X-ray, CT and MRI. Through quantitative measurement and clinical validation with a radiologist in the loop, we experimentally demonstrate our approach’s performance superiority over traditional methods like JPEG and J2K operating at matching compression factors.
更多
查看译文
关键词
Learning-based image compression,High-density radiology image compression,Neural architecture search,Design space exploration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要