Rational Design of Biological Crystals with Enhanced Physical Properties by Hydrogen Bonding Interactions

RESEARCH(2023)

引用 1|浏览15
暂无评分
摘要
Hydrogen bonds are non-covalent interactions and essential for assembling supermolecules into ordered structures in biological systems, endowing crystals with fascinating physical properties, and inspiring the construction of eco-friendly electromechanical devices. However, the interplay between hydrogen bonding and the physical properties is not fully understood at the molecular level. Herein, we demonstrate that the physical property of biological crystals with double-layer structures could be enhanced by rationally controlling hydrogen bonding interactions between amino and carboxyl groups. Different hydrogen bonding interactions result in various thermal, mechanical, electronic, and piezoelectric properties. In particular, the weak interaction between O and H atoms contributes to low mechanical strength that permits important ion displacement under stress, giving rise to a strong piezoelectric response. This study not only reveals the correlation between the hydrogen bonding and physical properties in double -layer structures of biological crystals but also demonstrates the potential of these crystals as functional biomaterials for high-performance energy-harvesting devices. Theoretical calculations and experimental verifications in this work provide new insights into the rational design of biomaterials with desirable physical properties for bioelectrical devices by modulating intermolecular interactions.
更多
查看译文
关键词
biological crystals,hydrogen bonding interactions,hydrogen bonding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要