Shortest Paths in Portalgons

arxiv(2023)

引用 0|浏览23
暂无评分
摘要
Any surface that is intrinsically polyhedral can be represented by a collection of simple polygons (fragments), glued along pairs of equally long oriented edges, where each fragment is endowed with the geodesic metric arising from its Euclidean metric. We refer to such a representation as a portalgon, and we call two portalgons equivalent if the surfaces they represent are isometric. We analyze the complexity of shortest paths in portalgons. We call a fragment happy if any shortest path on the portalgon visits it at most a constant number of times. A portalgon is happy if all of its fragments are happy. We present an efficient algorithm to compute shortest paths on happy portalgons. The number of times that a shortest path visits a fragment is unbounded in general. We contrast this by showing that the intrinsic Delaunay triangulation of any polyhedral surface corresponds to a happy portalgon. Since computing the intrinsic Delaunay triangulation may be inefficient, we provide an efficient algorithm to compute happy portalgons for a restricted class of portalgons.
更多
查看译文
关键词
portalgons,paths
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要