MAT Gain of Activity Mutation in Helicobacter pylori Is Associated with Resistance to MTAN Transition State Analogues.

ACS infectious diseases(2023)

引用 0|浏览10
暂无评分
摘要
is found in the gut lining of more than half of the world's population, causes gastric ulcers, and contributes to stomach cancers. Menaquinone synthesis in relies on the rare futalosine pathway, where 5'-methylthioadenosine nucleosidase (MTAN) is proposed to play an essential role. Transition state analogues of MTAN, including BuT-DADMe-ImmA (BTDIA) and MeT-DADMe-ImmA (MTDIA), exhibit bacteriostatic action against numerous diverse clinical isolates of with minimum inhibitory concentrations (MIC's) of <2 ng/mL. Three BTDIA-resistant clones were selected under increasing BTDIA pressure. Whole genome sequencing showed no mutations in MTAN. Instead, resistant clones had mutations in , methionine adenosyltransferase (MAT), , a regulator of the iron transport system, and , a flagellar synthesis regulator. The mutation in causes expression of a MAT with increased catalytic activity, leading to elevated cellular -adenosylmethionine. Metabolite analysis and the mutations associated with resistance suggest multiple inputs associated with BTDIA resistance. Human gut microbiome exposed to MTDIA revealed no growth inhibition under aerobic or anaerobic conditions. Transition state analogues of MTAN have potential as agents for treating infection without disruption of the human gut microbiome or inducing resistance in the MTAN target.
更多
查看译文
关键词
S-adenosylmethionine,antibiotic resistance,flagella synthesis,futalosine menaquinone pathway,gastric ulcers,iron transport
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要