The win-win effects of nitrification inhibitors on soil-crop systems: Decreasing carbendazim residues but promoting soil bacterial community diversities and stabilities and crop yields.

Journal of hazardous materials(2023)

引用 2|浏览5
暂无评分
摘要
Applying nitrogen (N)-cycling inhibitors is an effective measure to improve N fertilizer utilization efficiency, but the effects of N-cycling inhibitors on fungicide residues in soil-crop systems are unclear. In this study, nitrification inhibitors dicyandiamide (DCD) and 3, 4-dimethylpyrazole phosphate (DMPP) and urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) were applied into agricultural soils with fungicide carbendazim applications. The soil abiotic properties, carrot yields, carbendazim residues, bacterial communities and their comprehensive relationships were also quantified. Compared to the control treatment, the DCD and DMPP significantly decreased soil carbendazim residues by 96.2% and 96.0%, and the DMPP and NBPT significantly reduced carrot carbendazim residues by 74.3% and 60.3%, respectively. The nitrification inhibitor applications also generated significant and positive effects on carrot yields and soil bacterial community diversities. The DCD application significantly stimulated soil Bacteroidota and endophytic Myxococcota and modified soil and endophytic bacterial communities. Meanwhile, the DCD and DMPP applications also positively stimulated the co-occurrence network edges of soil bacterial communities by 32.6% and 35.2%, respectively. The linear correlation coefficients between soil carbendazim residues and pH, ETSA and NH4+-N contents were - 0.84, - 0.57 and - 0.80, respectively. The nitrification inhibitor applications generated win-win effects on the soil-crop systems by decreasing carbendazim residues but promoting soil bacterial community diversities and stabilities and crop yields.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要