A gel microparticle-based self-thickening strategy for 3D printing high-modulus hydrogels skeleton cushioned with PNAGA hydrogel mimicking anisotropic mechanics of meniscus.

Bioactive materials(2023)

引用 0|浏览14
暂无评分
摘要
Developing a meniscus substitute mimicking the anisotropic mechanics (higher circumferential tensile modulus and lower compressive modulus) of native tissue remains a great challenge. In this work, based on the pendant group structure-dependent H-bonding strengthening mechanism, two kinds of amide-based H-bonding crosslinked hydrogels with distinct mechanical behaviors, that is, the flexible poly(N-acryloyl glycinamide) (PNAGA) and the ultra-stiff poly(N-acryloylsemicarbazide) (PNASC) hydrogels are employed to construct the biomimetic meniscus substitute. To this end, a gel microparticle-based self-thickening strategy is first proposed to fabricate PNASC (GMP-PNASC) high-modulus hydrogels skeleton by extrusion printing technology in mimicking the collagen fibers in native meniscus to resist the circumferential tensile stress. Then, the PNAGA hydrogel is infused into the PNASC skeleton to replicate the proteoglycan, providing a lower compressive modulus. By regulating the structural features at the interior and peripheral regions, the GMP-PNASC/PNAGA hydrogel meniscus scaffold with the higher tensile modulus (87.28 ± 6.06 MPa) and lower compressive modulus (2.11 ± 0.28 MPa) can be constructed. outcome at 12 weeks post-implantation of rabbit's medial meniscectomy model confirms the effects of GMP-PNASC/PNAGA meniscus scaffold on alleviating the wear of articular cartilage and ameliorating the development of osteoarthritis (OA).
更多
查看译文
关键词
Extrusion printing,Gel microparticle,High-modulus hydrogel,Meniscus substitute
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要