Ultra-Low Pt Doping and Pt-Ni Pair Sites in Amorphous/Crystalline Interfacial Electrocatalyst Enable Efficient Alkaline Hydrogen Evolution.

Small (Weinheim an der Bergstrasse, Germany)(2023)

引用 6|浏览3
暂无评分
摘要
Noble metal doping can achieve an increase in mass activity (MA) without sacrificing catalysis efficiency and stability, so that alkaline hydrogen evolution reaction (HER) performance of the catalyst can be optimized to the maximum degree. However, its excessively large ionic radius makes it difficult to achieve either interstitial doping or substitutional doping under mild conditions. Herein, a hierarchical nanostructured electrocatalyst with enriched amorphous/crystalline interfaces for high-efficiency alkaline HER is reported, which is composed of amorphous/crystalline (Co, Ni) (HPO ) (OH) homogeneous hierarchical structure with an ultra-low doped Pt (Pt-a/c-NiHPi). Benefiting from the structural flexibility of the amorphous component, extremely low Pt (0.21 wt.%, totally 3.31 µg Pt on 1 cm NF) are stably doped on it via a simple two-phase hydrothermal method. The DFT calculations show that due to the strongly electron transfer between the crystalline/amorphous components at the interfaces, electrons finally concentrate toward Pt and Ni in the amorphous components, thus the electrocatalyst has near-optimal energy barriers and adsorption energy for H O and H . With the above benefits, the obtained catalyst exhibits an exceptionally high MA (39.1 mA µg ) at 70 mV, which is almost the highest level among the reported Pt-based electrocatalysts for alkaline HER.
更多
查看译文
关键词
alkaline hydrogen evolution reaction (HER),amorphous/crystalline composite interfaces,hierarchical structures,interface engineering,ultra-low Pt dopping
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要