Doublecortin-Expressing Neurons in Human Cerebral Cortex Layer II and Amygdala from Infancy to 100 Years Old

Molecular neurobiology(2023)

引用 4|浏览13
暂无评分
摘要
A cohort of morphologically heterogenous doublecortin immunoreactive (DCX +) “immature neurons” has been identified in the cerebral cortex largely around layer II and the amygdala largely in the paralaminar nucleus (PLN) among various mammals. To gain a wide spatiotemporal view on these neurons in humans, we examined layer II and amygdalar DCX + neurons in the brains of infants to 100-year-old individuals. Layer II DCX + neurons occurred throughout the cerebrum in the infants/toddlers, mainly in the temporal lobe in the adolescents and adults, and only in the temporal cortex surrounding the amygdala in the elderly. Amygdalar DCX + neurons occurred in all age groups, localized primarily to the PLN, and reduced in number with age. The small-sized DCX + neurons were unipolar or bipolar, and formed migratory chains extending tangentially, obliquely, and inwardly in layers I–III in the cortex, and from the PLN to other nuclei in the amygdala. Morphologically mature-looking neurons had a relatively larger soma and weaker DCX reactivity. In contrast to the above, DCX + neurons in the hippocampal dentate gyrus were only detected in the infant cases in parallelly processed cerebral sections. The present study reveals a broader regional distribution of the cortical layer II DCX + neurons than previously documented in human cerebrum, especially during childhood and adolescence, while both layer II and amygdalar DCX + neurons persist in the temporal lobe lifelong. Layer II and amygdalar DCX + neurons may serve as an essential immature neuronal system to support functional network plasticity in human cerebrum in an age/region-dependent manner.
更多
查看译文
关键词
Adult neurogenesis,Brain evolution,Chain migration,Interneuron,Neuroplasticity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要