Precise Spatial Tuning of Visually Driven Alpha Oscillations in Human Visual Cortex.

bioRxiv : the preprint server for biology(2023)

引用 0|浏览8
暂无评分
摘要
Neuronal oscillations at about 10 Hz, called alpha oscillations, are often thought to arise from synchronous activity across occipital cortex, reflecting general cognitive states such as arousal and alertness. However, there is also evidence that modulation of alpha oscillations in visual cortex can be spatially specific. Here, we used intracranial electrodes in human patients to measure alpha oscillations in response to visual stimuli whose location varied systematically across the visual field. We separated the alpha oscillatory power from broadband power changes. The variation in alpha oscillatory power with stimulus position was then fit by a population receptive field (pRF) model. We find that the alpha pRFs have similar center locations to pRFs estimated from broadband power (70-180 Hz), but are several times larger. The results demonstrate that alpha suppression in human visual cortex can be precisely tuned. Finally, we show how the pattern of alpha responses can explain several features of exogenous visual attention. Significance Statement:The alpha oscillation is the largest electrical signal generated by the human brain. An important question in systems neuroscience is the degree to which this oscillation reflects system-wide states and behaviors such as arousal, alertness, and attention, versus much more specific functions in the routing and processing of information. We examined alpha oscillations at high spatial precision in human patients with intracranial electrodes implanted over visual cortex. We discovered a surprisingly high spatial specificity of visually driven alpha oscillations, which we quantified with receptive field models. We further use our discoveries about properties of the alpha response to show a link between these oscillations and the spread of visual attention.
更多
查看译文
关键词
human visually cortex,alpha oscillations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要