Syntheses, Structural Characterization, and Cytotoxicity Assessment of Novel Mn(II) and Zn(II) Complexes of Aroyl-Hydrazone Schiff Base Ligand

ACS OMEGA(2023)

引用 5|浏览0
暂无评分
摘要
This work describes the syntheses, structural characterization, and biological profile of Mn(II)- and Zn(II)-based complexes 1 and 2 derived from the aroyl-hydrazone Schiff base ligand (L1). The synthesized compounds were thoroughly characterized by elemental analysis, Fourier transform infrared spectroscopy (FTIR), UV-vis, electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and single-crystal X-ray diffraction (s-XRD). Density functional theory (DFT) studies of complexes 1 and 2 were performed to ascertain the structural and electronic properties. Hirshfeld surface analysis was used to investigate different intermolecular interactions that define the stability of crystal lattice structures. To ascertain the therapeutic potential of complexes 1 and 2, in vitro interaction studies were carried out with ct-DNA and bovine serum albumin (BSA) using analytical and multispectroscopic techniques, and the results showed more avid binding of complex 2 than complex 1 and L1. The antioxidant potential of complexes 1 and 2 was examined against the 2,2-diphenyl picrylhydrazyl (DPPH) free radical, which revealed better antioxidant ability of the Mn(II) complex. Moreover, the antibacterial activity of synthesized complexes 1 and 2 was tested against Gram-positive and Gram-negative bacteria in which complex 2 demonstrated more effective bactericidal activity than L1 and complex 1 toward Gram-positive bacteria. Furthermore, the in vitro cytotoxicity assessment of L1 and complexes 1 and 2 was carried out against MDA-MB-231 (triple negative breast cancer) and A549 (lung) cancer cell lines. The cytotoxic results revealed that the polymeric Zn(II) complex exhibited better and selective cytotoxicity against the A549 cancer cell line as was evidenced by its low IC50 value.
更多
查看译文
关键词
elemental analysis,Fourier transform infrared spectroscopy (FTIR),UV - vis,electron
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要