WALLABY Pre-Pilot Survey: Radio Continuum Properties of the Eridanus Supergroup

arxiv(2023)

引用 2|浏览31
暂无评分
摘要
We present the highest resolution and sensitivity $\sim1.4\,$GHz continuum observations of the Eridanus supergroup obtained as a part of the Widefield ASKAP L-band Legacy All-sky Blind surveY (WALLABY) pre-pilot observations using the Australian Square Kilometer Array Pathfinder (ASKAP). We detect 9461 sources at 1.37 GHz down to a flux density limit of $\sim0.1$ mJy at $6.1''\times 7.9''$ resolution with a mean root-mean-square (RMS) of 0.05 mJy/beam. We find that the flux scale is accurate to within 5% (compared to NVSS at 1.4 GHz). We then determine the global properties of eight Eridanus supergroup members, which are detected in both radio continuum and neutral hydrogen (HI) emission, and find that the radio-derived star formation rates (SFRs) agree well with previous literature. Using our global and resolved radio continuum properties of the nearby Eridanus galaxies, we measure and extend the infrared-radio correlation (IRRC) to lower stellar masses and inferred star formation rates than before. We find the resolved IRRC to be useful for: 1) discriminating between AGN and star-forming galaxies (SFGs); 2) identifying background radio sources; and 3) tracing the effects of group environment pre-processing in NGC 1385. We find evidence for tidal interactions and ram-pressure stripping in the HI, resolved spectral index and IRRC morphologies of NGC 1385. There appears to be a spatial coincidence (in projection) of double-lobed radio jets with the central HI hole of NGC 1367. The destruction of polycyclic aromatic hydrocarbons (PAHs) by merger-induced shocks may be driving the observed WISE W3 deficit observed in NGC 1359. Our results suggest that resolved radio continuum and IRRC studies are excellent tracers of the physical processes that drive galaxy evolution and will be possible on larger sample of sources with upcoming ASKAP radio continuum surveys.
更多
查看译文
关键词
radio continuum properties,eridanus
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要