A reversible CHEF-based NIR fluorescent probe for sensing Hg2+ and its multiple application in environmental media and biological systems.

The Science of the total environment(2023)

引用 18|浏览13
暂无评分
摘要
Hg2+ poses a great threat to human health and the environment due to its bioaccumulation and permanent damage. Herein, a reversible CHEF-based near-infrared fluorescent probe 2-(3-((E)-4-((E)-4-(diethylamino)-2- hydroxybenzylidene)amino)styryl)-5,5-dimethylcyclohex-2-en-1-ylidene)propanedinitrile (DHEY) capable of specifically recognizing Hg2+ was constructed. DHEY exhibits advantages of large Stokes shift (157 nm), excellent selectivity, high sensitivity (LOD = 3.2 μg/L), and fast response efficiency (<3 min). Interestingly, DHEY can also realize rapid and effective detection of Hg2+ after being recycled 7 times. The successful recovery of trace Hg2+ in different environmental water samples fully demonstrates the potential of DHEY for actual applications. In particular, DHEY enables real-time observation of the distribution and translocation pattern of exogenous Hg2+ in HeLa cells and zebrafish. This work provides important theoretical support for investigating the fate of heavy metal ions in the environment using fluorescence techniques.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要