Maize tubulin folding cofactor B is required for cell division and cell growth through modulating microtubule homeostasis.

Qingqian Zhou,Zhiyuan Fu, Mengyuan Li,Qingwen Shen,Canran Sun, Yijian Feng, Yang Liu,Jianjun Jiang, Tao Qin,Tonglin Mao,Sarah Jane Hearne,Guifeng Wang,Jihua Tang

The New phytologist(2023)

引用 3|浏览8
暂无评分
摘要
Tubulin folding cofactors (TFCs) are required for tubulin folding, α/β tubulin heterodimer formation, and microtubule (MT) dynamics in yeast and mammals. However, the functions of their plant counterparts remain to be characterized. We identified a natural maize crumpled kernel mutant, crk2, which exhibits reductions in endosperm cell number and size, as well as embryo/seedling lethality. Map-based cloning and functional complementation confirmed that ZmTFCB is causal for the mutation. ZmTFCB is targeted mainly to the cytosol. It facilitates α-tubulin folding and heterodimer formation through sequential interactions with the cytosolic chaperonin-containing TCP-1 ε subunit ZmCCT5 and ZmTFCE, thus affecting the organization of both the spindle and phragmoplast MT array and the cortical MT polymerization and array formation, which consequently mediated cell division and cell growth. We detected a physical association between ZmTFCB and the maize MT plus-end binding protein END-BINDING1 (ZmEB1), indicating that ZmTFCB1 may modulate MT dynamics by sequestering ZmEB1. Our data demonstrate that ZmTFCB is required for cell division and cell growth through modulating MT homeostasis, an evolutionarily conserved machinery with some species-specific divergence.
更多
查看译文
关键词
cell division and growth,kernel development,maize,microtubule homeostasis,tubulin folding cofactor B
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要