Controlled Isotropic Canalization of Microsized Silicon Enabling Stable High-Rate and High-Loading Lithium Storage.

Advanced materials (Deerfield Beach, Fla.)(2023)

引用 2|浏览11
暂无评分
摘要
Silicon is attractive for lithium-ion batteries and beyond but suffers large volume change upon cycling. Hierarchical tactics show promise yet lack control over the unit construction and arrangement, limiting stability improvement at the practical level. Here, a protocol is developed as controlled isotropic canalization of microsized silicon. Distinct from the existing strategies, it involves isotropic canalization by honeycomb-like radial arrangement of silicon nanosheets, and canal consolidation by controlled dual bonding of silicon with carbon. The proof-of-concept nitrogen-doped carbon dual-bonded silicon honeycomb-like microparticles, specifically with a medium density of CNSi and COSi bonds, exhibit stable cycling impressively at high rates and industrial-scale loadings. Two key issues involve isotropic canalization facilitating ion transport in all directions of individual granules and controlled consolidation conferring selective ion permeation and securing charge transport. The study highlights the configurational isotropy and interfacial bonding density, and provides insight into rational design and manufacture of silicon and others with industry-viable features.
更多
查看译文
关键词
dual covalent bonding,isotropic canalization,lithium-ion batteries,microsized silicon,nitrogen-doped carbon
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要