Bimetal-MOF and bacterial cellulose-derived three-dimensional N-doped carbon sheets loaded Co/CoFe nanoparticles wrapped graphite carbon supported on porous carbon nanofibers: An efficient multifunctional electrocatalyst for Zn-air batteries and overall water splitting.

Journal of colloid and interface science(2023)

引用 4|浏览7
暂无评分
摘要
In this work, a three-dimensional (3D) multifunctional Co/CoFeNC@N-CNF electrocatalyst was first synthesized by the pyrolysis of a CoFe bimetal-centred metal-organic framework (MOF) and bacterial cellulose (BC). The initial potential and half-wave potential of Co/CoFeNC@N-CNF can reach 0.99 V and 0.8 V. Low overpotentials of 320 mV and 155 mV are purely required for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) at a current density of 10 mA cm, respectively. The electrochemical performance of Co/CoFeNC@N-CNF exceeds most bimetal-MOF-derived electrocatalysts reported to date. The superior electrochemical performance is mainly due to abundant active sites, high-efficiency electrochemical performance, and high electron transport efficiency. In addition, the theoretical calculation results show that the synergistic effect of the CoFe bimetal can optimize the adsorption energy for intermediates of the oxygen reduction reaction (ORR), OER and HER. Furthermore, we assembled a mold and solid Zn-air battery using the catalyst as an air cathode catalyst, demonstrating the maximum power densities of 292 mW cm and 178 mW cm. The 3D structure electrocatalysts derived from the MOF and bacterial cellulose provide an innovative and instructive approach for the design of diverse energy nanomaterials.
更多
查看译文
关键词
Bacterial cellulose,Bimetal-MOFs,Hydrogen evolution reaction,Oxygen evolution reaction,Oxygen reduction reaction,Zn-air battery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要